Dimension of the repeller for a piecewise expanding affine map
نویسندگان
چکیده
منابع مشابه
Uniqueness of the Srb Measure for Piecewise Expanding Weakly Coupled Map Lattices in Any Dimension
We prove the existence of a unique SRB measure for a wide range of multidimensional weakly coupled map lattices. These include piecewise expanding maps with diffusive coupling.
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Enlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملHybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model
In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2020
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2020.4560